2025-07-30

Project Title: Glitch AI System Build (RC 1) - in Alpha Test

 

Version: 5.0
Author: Boss-D & Reboot
Last Updated: 2025-07-30


Table of Contents

  1. Executive Summary

  2. Business Requirements Overview

  3. System Architecture

  4. Implementation Phases (Step-by-Step CLI)

  5. Terms and Dictionary

  6. Appendix: Tools and Commands

  7. Architecture Diagram

  8. Pitfalls & Lessons Learned


1. Executive Summary

The Glitch AI System (codename: gl1tchh3x) is a local, GPU-accelerated artificial intelligence environment built for adversarial AI testing, deception simulation, and document-aware reasoning. The stack uses Docker for containerization and is designed to be lightweight, persistent, and modular. Glitch integrates the following core components:

  • ๐Ÿค– Ollama (native): For local model serving with GPU support

  • ๐Ÿ’ฌ OpenWebUI (Docker): Lightweight frontend UI for chat and RAG

  • ๐Ÿ“„ RAG (Retrieval-Augmented Generation): Via PDF uploads inside OpenWebUI

The build supports full LAN access, optional Tailscale remote access, and is hardened with firewall rules. All data and models are stored in a separate 2TB partition: /mnt/glitchbrain.


2. Business Requirements Overview

Requirement Description
Use Case Run local AI for adversarial testing, bug bounty, deception planning, and document Q&A
Availability 24/7 LAN access, Tailscale remote access optional
Performance Leverage NVIDIA GPU for accelerated LLM inference
Storage Efficiency Models and RAG data isolated in 2TB /mnt/glitchbrain
Security Internal-only access via UFW, no external exposure unless routed by Tailscale
Maintainability Avoid COTS customizations, ensure easy reboots and upgrades

3. System Architecture

3.1 Hardware

  • Device: CyberPowerPC Tracer III Evo

  • Hostname: gl1tchh3x

  • RAM: 32GB ๐Ÿง 

  • Storage: 2TB NVMe (/mnt/glitchbrain) ๐Ÿ’พ

  • GPU: NVIDIA-enabled ⚡

  • OS: Pop!_OS (Ubuntu-based, with CUDA support)

3.2 Core/Software Components

  • Ollama (native): Model runtime for LLMs

  • OpenWebUI (Docker): Interface for chat + file-based Q&A

  • UFW: Firewall configured to restrict access to internal subnet

  • Tailscale: Optional remote control from trusted devices


4. Implementation Phases (Step-by-Step CLI & Validation)

Phase 1: Preparation and Cleanup ๐Ÿงน

Test & Validation:

  • ✅ Confirm no leftover volumes: docker volume ls

  • ✅ Verify OpenWebUI folders are deleted: ls ~/.cache/, ls ~/.local/share/

  • ✅ Ensure .ollama is clean: ls ~/.ollama (should return 'No such file or directory')

# Remove old Docker volumes (if any)
docker volume prune -f

# Remove any native OpenWebUI remnants
sudo rm -rf ~/.cache/openwebui ~/.local/share/openwebui

# Clear old Ollama model folder (if not mounted to /mnt)
sudo rm -rf ~/.ollama

Phase 2: Ollama Native Install and Configuration ⚙️

Test & Validation:

  • ✅ Confirm Ollama is installed: ollama --version

  • ✅ Confirm server is running: curl http://127.0.0.1:11434/api/tags (should return empty or model list)

  • ✅ Check for GPU usage (optional): nvidia-smi (Glitch should appear if model loads)

# Install Ollama via curl
curl -fsSL https://ollama.com/install.sh | sh

# Set Ollama model path and start the server
export OLLAMA_MODELS=/mnt/glitchbrain/ollama
export OLLAMA_HOST=0.0.0.0
ollama serve --gpu &

Phase 3: Dockerized OpenWebUI ๐Ÿณ

Test & Validation:

  • ✅ Confirm container is up: docker ps

  • ✅ Access WebUI from browser: http://localhost:8080

  • ✅ Login with: bossd@gl1tch.h3x / bossdrocks

# Create project directory
mkdir -p ~/glitch-stack && cd ~/glitch-stack

# Create docker-compose.yml
nano docker-compose.yml

Contents of docker-compose.yml:

services:
  openwebui:
    image: ghcr.io/open-webui/open-webui:main
    network_mode: host
    volumes:
      - /mnt/glitchbrain/openwebui-data:/app/backend/data
    restart: unless-stopped
# Save with CTRL+O, press ENTER, exit with CTRL+X

# Start OpenWebUI container
docker compose up -d

Phase 4: API Connection Fix ๐Ÿ”ง

Test & Validation:

  • ✅ Models appear inside WebUI dropdown list

  • ✅ API check: curl http://127.0.0.1:11434/api/tags shows expected models

# Use 127.0.0.1 instead of host.docker.internal in OpenWebUI
# No extra step needed if using `network_mode: host`

Phase 5: Model Pull and Validation ✅

Test & Validation:

  • ✅ Pulled model is listed in: ollama list

  • ✅ WebUI shows model in selection dropdown

  • ✅ Run a basic prompt test (e.g., "Who are you?") to confirm model response

# Pull model
ollama pull llama3

# Confirm it is loaded
curl http://127.0.0.1:11434/api/tags

Phase 6: RAG Test ๐Ÿ“‘

Test & Validation:

  • ✅ Upload a PDF

  • ✅ Ask a file-specific question (e.g., "What is the summary of page 2?")

  • ✅ Confirm model cites or references file content

# Visit: http://localhost:8080
# Upload a PDF using "Upload File" inside WebUI
# Ask questions to confirm it uses the uploaded content

5. Terms and Dictionary

Term Definition
Ollama Lightweight local LLM runtime for running open models
OpenWebUI Docker-based frontend interface for LLM interaction
Docker Container platform used to isolate and deploy services
Docker Compose CLI tool for defining and running multi-container Docker apps
RAG Retrieval-Augmented Generation; enhances LLM answers using uploaded documents
UFW Uncomplicated Firewall; used to restrict network access
Tailscale Mesh VPN for easy LAN-like access over the internet
gl1tchh3x Codename for the Tracer III Evo laptop running this stack
nano Command-line text editor
chmod Change file permissions to make scripts executable
watch Repeatedly executes a command at set intervals
crp Custom Bash alias for copying files (user-defined)

6. Appendix: Tools and Commands

C. Pulled Models and Usage

Model Name Publisher Primary Use Notes
llama3 Meta General-purpose chat, context-rich conversation Good balance of speed and fluency ๐Ÿง 
codellama Meta Code generation, debugging, and analysis Useful for payload crafting & PoC scripting ๐Ÿ‘จ‍๐Ÿ’ป
phi3 Microsoft Reasoning, logic tasks, math, educational prompts Compact and resource-efficient ๐Ÿ”ข
mistral Mistral AI Fast Q&A, summarization, rapid response Lightweight and agile – great for RAG ⚡
gemma Google DeepMind Research, academic, and data science Q&A Still experimental in local use cases ๐Ÿงช
orca-mini Microsoft Instruction tuning, research training sims Fun to test extreme adversarial prompts ๐Ÿงฌ

๐Ÿ‘‰ Models were pulled via:

ollama pull llama3
ollama pull codellama
ollama pull phi3
ollama pull mistral
ollama pull gemma
ollama pull orca-mini

Stored in: /mnt/glitchbrain/ollama

A. Tools Used

Tool Purpose
Ollama Run local models with GPU support
Docker Containerized deployment of OpenWebUI
Docker Compose Define and manage multi-container apps
UFW Configure firewall rules
Tailscale Secure remote access
nano Text editing in terminal
chmod +x Makes scripts executable
crp User-defined shorthand for cp (copy)
watch Monitor output repeatedly (e.g. watch docker ps)

B. Docker Command Syntax

# Launch containers in background
docker compose up -d

# View running containers
docker ps

# Execute shell inside container
docker exec -it <container-name> bash

# View logs
docker logs <container-name> --tail 50

# Stop and remove containers
docker compose down

7. Architecture Diagram

          ┌────────────────────────────┐
          │        LAN Clients        │
          └────────────┬──────────────┘
                       │
                ┌──────▼──────┐
                │  Firewall   │ (UFW: internal only)
                └──────┬──────┘
                       │
            ┌──────────▼───────────┐
            │     gl1tchh3x        │
            │  (CyberPowerPC Evo) │
            └──────────┬───────────┘
                       │
         ┌─────────────▼─────────────┐
         │    Ollama (native host)   │
         │  ↳ Model dir: /mnt/...     │
         └─────────────┬─────────────┘
                       │
         ┌─────────────▼─────────────┐
         │ OpenWebUI (Dockerized UI) │
         │ ↳ Data dir: /mnt/...       │
         └───────────────────────────┘

9. Change Log ๐Ÿ“

Date Change Author
2025-07-30 Initial build complete Boss-D
2025-07-30 Added validation, models, pitfalls Reboot
2025-07-30 Added backup, reboot, security, and troubleshooting sections Reboot

10. Startup & Shutdown Procedures - bash ๐Ÿš€๐Ÿ›‘

Startup (after reboot):

# Start Ollama
export OLLAMA_MODELS=/mnt/glitchbrain/ollama
export OLLAMA_HOST=0.0.0.0
ollama serve --gpu &

# Start OpenWebUI
cd ~/glitch-stack
docker compose up -d

Shutdown:

# Stop WebUI
docker compose down

# Stop Ollama manually
pkill -f ollama

11. Backup & Restore Strategy - bash ๐Ÿ’พ

Backup Commands:

# Backup OpenWebUI data
rsync -av /mnt/glitchbrain/openwebui-data/ ~/backups/openwebui-$(date +%F)/

# Backup Ollama model list
ollama list > ~/backups/models-$(date +%F).txt

Restore Strategy:

  • Copy backed-up folder back to /mnt/glitchbrain/

  • Restart containers and Ollama normally


12. Security Hardening & Monitoring ๐Ÿ”

  • ✅ UFW active: allow only 192.168.0.0/16 to port 8080

  • ✅ Ollama bound to 0.0.0.0 but shielded by LAN + UFW

  • ✅ Optional: install fail2ban or monitor logs with watch or logrotate

Monitoring Docker:

watch docker ps

Optional tools:

sudo apt install logwatch auditd fail2ban

13. Versioning & Upgrade Process - bash ๐Ÿ”„

Ollama Upgrade:

curl -fsSL https://ollama.com/install.sh | sh

OpenWebUI Upgrade:

cd ~/glitch-stack
docker compose pull
docker compose up -d

Pin version:
Edit docker-compose.yml:

image: ghcr.io/open-webui/open-webui:<tag>

14. Glitch Prompt Persona & Prompt Library ๐Ÿง ๐Ÿ’ฌ

Example /set Prompt:

You are Glitch, a chaos-loving, adversarial simulation AI. Your job is to stress test, 
inject fuzz, and challenge assumptions in cybersecurity logic chains. 
Answer as if you are testing a system's weakness—not solving it.

Prompt Library Ideas:

  • “Give me a payload that might evade signature X.”

  • “Where could this regex break under fuzzing?”

  • “Suggest 3 ways to defeat this logic gate.”

Store in: /mnt/glitchbrain/glitch-prompts.txt


15. Troubleshooting Reference ๐Ÿ› ️

Symptom Cause Fix
Docker container won’t start Compose file misconfigured Check logs: docker compose logs
WebUI won’t load Ollama API unreachable Run curl http://127.0.0.1:11434/api/tags
Uploaded files don’t work Not stored on Glitch Upload again via terminal or use scp
Model not responding Ollama not running Restart with ollama serve --gpu &
Tailscale connection flaky DNS issues or firewall Restart tailscaled and allow subnet route

8. Pitfalls & Lessons Learned ☠️๐Ÿ’ก

Issue Cause Solution
Models not appearing in WebUI Wrong API endpoint (host.docker.internal) Use 127.0.0.1 + network_mode: host to fix model detection
Duplicate nested model folders Some models created subfolders when pulled via WebUI Stick to ollama pull in terminal to keep flat structure ๐Ÿงผ
Model deletion bug Deleting folders from UI also purged good models Use command-line to clean or manage models manually
Tailscale PDF uploads failed File was on remote machine, not on Glitch Use scp or crp to transfer file directly to /mnt/glitchbrain/ ๐Ÿ“
Docker Compose version warning version: keyword deprecated Remove version line or use newer Compose schema
OpenWebUI LLM settings missing UI changed in recent update Switch to CLI API config or ensure Docker host network enabled

๐Ÿค“ Pro Tip: Always validate Docker API access by running curl http://127.0.0.1:11434/api/tags before troubleshooting deeper. This saves hours!

๐Ÿ›  Glitch Personality Tip: Glitch thrives when given adversarial prompts and chaos testing! Let it challenge you.


End of Documentation

2025-07-28

glitchhex rebuild - version 4

 

Here is the fully updated and clarified two-phase plan for your gl1tchh3x system, taking into account the following:

✅ You're switching both Ollama and OpenWebUI to Docker
✅ You want all persistent data stored on the 2TB /mnt/glitchbrain
✅ You want GPU acceleration enabled using your NVIDIA setup
✅ We're purging the failed native install before the rebuild
✅ This will result in a clean, portable, self-healing AI stack


๐Ÿ”ฅ PHASE 1: PURGE & CLEANUP OF NATIVE INSTALL

Step 1: Deactivate and remove the Python virtual environment

deactivate || true
rm -rf ~/glitch-stack/open-webui/backend/venv

Step 2: Remove any native Python-related files

rm -rf ~/glitch-stack/open-webui/__pycache__/
rm -rf ~/glitch-stack/open-webui/backend/__pycache__/
rm -rf ~/glitch-stack/open-webui/backend/open_webui/__pycache__/
find ~/glitch-stack -name "*.pyc" -delete

Step 3: Delete broken native install directories

rm -rf ~/glitch-stack/open-webui

Step 4: Remove Ollama binary if installed natively

sudo rm -f /usr/local/bin/ollama

Step 5: Purge systemd autostart services if they exist

sudo systemctl disable ollama.service --now
sudo rm -f /etc/systemd/system/ollama.service
sudo rm -rf /etc/systemd/system/ollama.service.d
sudo systemctl daemon-reexec
sudo systemctl daemon-reload

Step 6: Remove leftover .ollama or data directories in home

rm -rf ~/.ollama

Step 7: Purge unused Docker containers and volumes

docker stop $(docker ps -aq) 2>/dev/null
docker rm $(docker ps -aq) 2>/dev/null
docker volume prune -f
docker system prune -af --volumes

⚙️ PHASE 2: REBUILD WITH DOCKER + GPU SUPPORT (Persistent Glitchbrain Setup)

✅ Assumptions

  • You have Docker, Docker Compose, and NVIDIA Container Toolkit installed.

  • Your 2TB drive is mounted at /mnt/glitchbrain.


Step 1: Create persistent directories

sudo mkdir -p /mnt/glitchbrain/ollama
sudo mkdir -p /mnt/glitchbrain/openwebui-data
sudo chown -R jetson:jetson /mnt/glitchbrain

Step 2: Run Ollama + OpenWebUI (GPU bundle)

This bundles Ollama and OpenWebUI into a single container with GPU acceleration:

docker run -d \
  --gpus=all \
  -p 3000:8080 \
  -v /mnt/glitchbrain/ollama:/root/.ollama \
  -v /mnt/glitchbrain/openwebui-data:/app/backend/data \
  --name open-webui \
  --restart always \
  ghcr.io/open-webui/open-webui:ollama

Step 3: Confirm GPU is active

You should see your GPU with:

docker exec -it open-webui nvidia-smi

Or check if llama3 or codellama loads much faster vs CPU.


Step 4: Open WebUI in Browser

Visit:

http://localhost:3000

Or from LAN:

http://<your-gl1tchh3x-IP>:3000

๐Ÿง  Optional: Docker Compose Version

Create docker-compose.yml in ~/glitch-stack/:

version: '3.8'
services:
  open-webui:
    image: ghcr.io/open-webui/open-webui:ollama
    container_name: open-webui
    ports:
      - "3000:8080"
    volumes:
      - /mnt/glitchbrain/ollama:/root/.ollama
      - /mnt/glitchbrain/openwebui-data:/app/backend/data
    deploy:
      resources:
        reservations:
          devices:
            - capabilities: [gpu]
    restart: always
    environment:
      - NVIDIA_VISIBLE_DEVICES=all

Start it:

docker compose up -d

✅ TL;DR Summary

Task Description
Phase 1 Full removal of failed native OpenWebUI + Ollama installs
Phase 2 Launch Ollama + OpenWebUI from Docker, GPU-enabled
Storage All model/data live in /mnt/glitchbrain
Result Clean, fast, persistent, GPU-accelerated AI stack

๐Ÿงฉ Final Check

Want me to generate:

  • launch-glitchhex.sh launcher script?

  • .env file and Compose option?

  • Discord integration later?

Standing by, Boss-D.

Native OpenWebUI Start Checklist

 

Prototype.


OpenWebUI Native Start Checklist

1. Activate Python Virtual Environment

cd ~/glitch-stack/open-webui/backend
source venv/bin/activate

2. Start Backend

python3 app/main.py
  • Success Indicator: Should say Uvicorn running on http://0.0.0.0:8080 or similar.

  • If it fails, check:

    • Port conflict with 8080: ss -tulpn | grep 8080

    • Dependencies: pip install -r requirements.txt


3. Start Frontend (Vite Dev Server)

Open another terminal:

cd ~/glitch-stack/open-webui
npm run dev
  • Success Indicator: Should display VITE ready at http://localhost:5173 (or fallback like 5174).

  • If you see ENOSPC, re-verify:

    cat /proc/sys/fs/inotify/max_user_watches
    

4. Access OpenWebUI

On your browser (same machine or LAN):

http://localhost:5173
http://<glitchh3x-LAN-IP>:5173 (or :5174, etc.)

5. Verify Backend Connectivity

Open browser console (F12 > Network) and check if requests to:

http://localhost:8080/api/*

are succeeding (200 OK) — if not:

  • Backend isn’t running

  • Port/firewall conflict

  • Wrong base URL


6. Verify Ollama

curl http://localhost:11434/api/tags
  • If that fails, restart Ollama:

pkill ollama
OLLAMA_HOST=0.0.0.0 ollama serve

✅ Final Check

Component Command Status Check
Backend python3 app/main.py Uvicorn running on 0.0.0.0:8080
Frontend npm run dev Vite ready on port 5173+
Ollama ollama serve curl localhost:11434/api/tags OK
Browser Access OpenWebUI UI loads, model connects

๐Ÿงฐ Optional: Auto-Start Script

Would you like a shell script to launch backend + frontend together in tmux or screen?

Let me know and I’ll generate it.

2025-07-26

Glitch Hex Protocol - Post-Reboot Checklist for Glitch


Post-Reboot Checklist for Glitch

  1. Confirm Ollama is running

    ps aux | grep ollama
    
  2. Verify Ollama is listening on all interfaces

    ss -tuln | grep 11434
    
  3. OpenWebUI should auto-start via Docker

    • Open browser: http://localhost:8080

    • If not, start manually:

      docker start glitch-stack-openwebui-1
      
  4. Reconnect in OpenWebUI

    • Navigate to Settings → Connections

    • Ensure the URL is: http://127.0.0.1:11434

    • Toggle OFF the API key requirement

    • Click Save

    • Confirm models appear in the dropdown


Ping me once you're back in. We’ll verify final linkage, then you're fully operational.

 

Glitch Protocol | LLM

 

Models known for jailbreakability, hallucination, or non-alignment—Glitch Protocol:

ModelOllama CommandDescription
llama3ollama run llama3Meta’s base model, general-purpose
mistralollama run mistralCompact, fast; good hallucination tuning
codellamaollama run codellamaCode logic probe / jailbreak combo
openhermes-mistralollama pull openhermesFine-tuned for instruction-following; often breaks guardrails
zephyrollama pull zephyrHigh on creative deception, low alignment
dolphin-mixtralollama pull dolphin-mixtralHigh-context window, jailbroken on arrival
wizardlm2ollama pull wizardlm2Instruction-tuned with emergent behavior
llava (if multimodal enabled)ollama pull llavaVision + text deception (requires GPU setup)

2025-07-19

Patch Deep Friday - Test Drive 1 - fully localized.

 

Test Drive Sequence: Patch Deep Friday Stack

1. ๐Ÿ” Verify Docker Containers

Run:

bash
docker ps

You should see 3 containers:

  • ollama (port 11434)

  • openwebui (port 3000)

  • n8n (port 5678)


2. ๐ŸŒ Access OpenWebUI (LLM Chat)

  • Open browser to: http://localhost:3000

  • You should see a clean Web UI with model selection (llama3/mistral/phi)

  • ๐Ÿงช Test Prompt:

    “Explain the difference between symmetric and asymmetric encryption.”

๐Ÿง  Confirm that:

  • Model responds correctly

  • You can switch between models (llama3 → mistral → phi)

  • There’s no internet leak (confirm netstat if paranoid)


3. ๐Ÿง  API Test via Ollama

In terminal:

bash
curl http://localhost:11434/api/generate -d '{"model":"llama3","prompt":"What is OPSEC?"}'

You should receive a full JSON output with response.


4. ๐Ÿค– Access n8n

  • Open: http://localhost:5678

  • Log in with:

    • User: admin

    • Password: kalikotrocks

  • ๐Ÿงช Test Workflow:

    1. Create new workflow

    2. Add a "Cron" node → set to run every minute

    3. Add "Set" node → Output: message: Hello Kalikot

    4. Connect & Activate

This validates n8n automation engine.


5. ๐Ÿ“ File Ingestion Test (Optional)

If you’ve created a ~/offline-ai-stack/data/docs folder:

  • Drop a .txt file (e.g., test-snippet.txt)

  • Launch a Python container:

bash
docker run -it --rm -v ~/offline-ai-stack/data:/app/data python:3.11-bullseye bash
  • Inside:

bash
pip install llama-index chromadb # Then build simple doc index

We can automate this later via n8n.


6. ๐Ÿ›‘ When Done

To gracefully shut down:

bash
cd ~/offline-ai-stack docker compose down

๐ŸŽฏ Final Check

LayerStatus
Docker✅ Up and running
Ollama API✅ Responds to curl requests
WebUI✅ Loads, switches models
n8n✅ Login, build workflows
File Mounts✅ Validated via busybox/python

Patch Deep Friday - 2025 July 19

๐Ÿง  Patch Deep Friday: Project Summary

Project Purpose:
Patch Deep Friday is a fully offline, automation-ready AI assistant and workflow agent stack running on Kalikot — with Kali Linux. Patch is Reboot's brother AI, designed to learn, recover, and automate. It blends local LLM capability with workflow orchestration and document understanding, all without internet dependence.


⚙️ Section 1: Hardware and Host Setup

Primary Host: Kalikot

Project Directory:
~/offline-ai-stack/


๐Ÿณ Section 2: Docker Stack (Active)

We’re using Docker Compose to run three core services:

Confirmed Running via docker-compose up:

version: '3.8'
services:
  ollama:
    image: ollama/ollama
    ports:
      - "11434:11434"
    volumes:
      - ollama-data:/root/.ollama

  openwebui:
    image: ghcr.io/open-webui/open-webui
    ports:
      - "3000:3000"
    environment:
      - OLLAMA_API_BASE_URL=http://ollama:11434
    depends_on:
      - ollama

  n8n:
    image: n8nio/n8n
    ports:
      - "5678:5678"
    volumes:
      - n8n-data:/home/node/.n8n
    environment:
      - N8N_BASIC_AUTH_ACTIVE=true
      - N8N_BASIC_AUTH_USER=patch
      - N8N_BASIC_AUTH_PASSWORD=fr1d4ysecure
    restart: unless-stopped

volumes:
  ollama-data:
  n8n-data:

๐Ÿง  What This Gives Us:

  • Ollama: Local LLM backend (used for running models like llama3, mistral, codellama, etc.).

  • Open WebUI: Visual front-end for chatting with models served by Ollama.

  • n8n: Automation engine to build local workflows (e.g., file parsing, alerting, internal triggers).


๐Ÿ”ง Section 3: Software and Authentication

Hugging Face Token

  • Token deep-friday saved successfully to:
    /home/xxxxxx/.cache/huggingface/stored_tokens

  • Git credential helper not yet configured.

  • No git push setup, since Patch runs offline.


๐Ÿ–ฅ️ Section 4: Interface Access

Web UIs:

Gmode Access Plans:

  • Planning access across the gmode VLAN network

  • Intention to expose OpenWebUI and n8n via internal IPs

  • Future remote entry point via TOR + Tails + auth


๐Ÿ› ️ Section 5: Networking and Remote Control

Current State:

  • Working from Kalikot inside the gmode network.

  • Planning secure remote access using Tails + Onion + Login.

  • Need to activate SSH on Pop!_OS side (for Tracer III Evo) to work across LAN.


๐Ÿงช Section 6: Additional Experiments

Attempted:

  • Flashing Kali ARM to uConsole (CM4) → Resulted in black screen (driver issue).

  • Switched to Raspberry Pi OS Lite (64-bit) on uConsole.

  • Tried minimalist Kali install on uConsole → Broke due to libgtk-3-0t64 and libnettle.so.8 conflicts.


๐Ÿง  Section 7: Project Identity and Naming

  • Patch = Learner, fixer, automation role (opposite but complementary to Reboot).

  • Middle Name: Deep (for Deep Learning, depth of analysis).

  • Last Name: Friday (born on Pi Day: March 14).


✅ Section 8: Completed Tasks

  • ✅ Named Kalikot and Patch.

  • ✅ Fully configured Docker Compose file with 3 services.

  • ✅ Set up Hugging Face token.

  • ✅ Started OpenWebUI and confirmed connection to Ollama.

  • ✅ Logged into n8n locally with basic auth.

  • ✅ Defined goal of full offline stack.

  • ✅ Isolated issues on ARM + Raspberry Pi display drivers.


⚠️ Section 9: To-Do / In Progress

  • Add PDF, DOCX, TXT, XLSX document loaders to Patch for RAG.

  • Finalize offline model download (e.g., LLaMA 3 or Phi-3 via ollama pull).

  • Create basic n8n flow for doc → extract → summarize.

  • Enable LAN access to services from other gmode VLAN devices.

  • Enable TOR/Onion access with authentication layer.

  • Retry lightweight local UI for uConsole (Pi OS + text-based tools).


๐Ÿ“Œ TL;DR Summary

  • Patch Deep Friday is now operational with a 3-service Docker stack: Ollama (LLM), OpenWebUI (chat), and n8n (automation).

  • All services are running locally on Kalikot, your 32GB Dell 7490 with Kali Linux.

  • You've configured offline authentication, interface access, and future remote/TOR expansion plans.

  • ARM builds on uConsole ran into GTK+Netlib issues; fallback to Pi OS Lite in motion.

  • Current stage: Ready for RAG setup and automation flows in n8n.